Acta Cryst. (1984). C40, 1008-1011

Structure du (Nitro-2 phényl)-3 Phényl-5 Dihydro-3,4 2*H*-Pyrroledicarboxylate-2,2 de Diéthyle, C₂₂H₂₂N₂O₆

PAR AHMED LAARIF

Laboratoire de Chimie Générale, UER des Sciences Exactes et Naturelles, La Bouloie, 25030 Besançon CEDEX, France

FRANÇOIS THÉOBALD

Faculté des Sciences, Université, La Bouloie, 25030 Besançon CEDEX, France

ET MOHAMED BIROUK ET JEAN-FRANÇOIS ROBERT*

Laboratoire de Chimie Pharmaceutique, UER des Sciences Médicales et Pharmaceutiques, Place St Jacques 25030 Besançon CEDEX, France

(Reçu le 24 mars 1983, accepté le 25 janvier 1984)

Abstract. $M_r = 410$, triclinic, $P\overline{1}$, $a = 11 \cdot 201$ (2), $b = 11 \cdot 792$ (2), $c = 9 \cdot 137$ (1) Å, $\alpha = 112 \cdot 13$ (1), $\beta = 112 \cdot 46$ (1), $\gamma = 81 \cdot 75$ (1)°, $V = 1033 \cdot 1$ Å³, Z = 2, $D_x = 1 \cdot 318$ Mg m⁻³, Cu K $\alpha = 1 \cdot 542$ Å, $\mu = 716$ mm⁻¹, F(000) = 432, T = 291 K, $R_w = 0.068$ for 3009 reflections. The conformation in the solid state obtained from an X-ray structure determination is compared with that observed in the liquid by NMR. The comparison is extended to diethyl 2,4-diphenyl-1-pyrroline-5,5-dicarboxylate (diethyl 3,5-diphenyl-3,4-dihydro-2H-pyrrole-2,2-dicarboxylate) whose structure was obtained previously. The influence of the nitro group substituted on the 4-phenyl is discussed.

Introduction. Dans un précédent mémoire (Théobald, Birouk & Robert, 1982) plusieurs d'entre nous ont relaté les données cristallographiques du diphényl-2,4 Δ -1pyrrolinedicarboxylate-5,5 de diéthyle (1),† obtenu par condensation de l'aminomalonate de diéthyle H₂NCH(COOEt)₂ sur la benzylidèneacétophénone PhCH=CHCOPh (Koch, Robert & Panouse, 1978). La comparaison des données cristallographiques et des données RMN a permis de confirmer sans ambiguïté la structure et la conformation du dérivé pyrrolinique obtenu.

* L'auteur auquel toute correspondance doit être adressée.

† Le nouveau nom préféré de Δ -1-pyrroline est 3,4-dihydro-2H-pyrrole.

Une étude RMN protonique d'une série de pyrrolinedicarboxylates-5,5 de diéthyle diversement substitués sur l'un ou l'autre des restes phényle a montré la persistance de la non équivalence magnétique des groupements éthoxy observée pour (1) (Robert, Koch & Panouse, 1979). De plus, cette étude a mis en évidence d'importantes modifications de déplacements chimiques et de constantes de couplage ³J lorsque l'on introduit des substituants en *ortho* du phényl-4 (Robert, Koch, Xicluna & Panouse, 1980).

Nous nous proposons de soumettre à une étude cristallographique la Δ -1-pyrroline (2) substituée par un groupement nitro en *ortho* du phényl-4. Nous comparerons cette structure avec celle de (1) en se référant, quand cela est possible, aux données RMN afin de voir si les modifications conformationnelles observées entre (2) et (1), déduites des variations des paramètres δ et ³J, sont en accord avec les modifications conformationnelles données par les résultats cristallographiques.

Partie expérimentale. Préparation par la méthode de Koch, Robert & Panouse (1979), cristallisation du méthanol. Dimensions approximatives: $0.40 \times 0.20 \times$ 0.20 mm. Paramètres cristallins affinés sur difractomètre Nonius CAD-4, 24 réflexions ayant 12 < $\theta < 51^{\circ}$; pas de correction d'absorption; sin θ/λ <0,621 Å⁻¹, $-10 \le h \le 13$, $-13 \le k \le 13$, 0 < $l \leq 11$; réflexion standard d'indices 611, variation d'intensité ±0,05. 4127 réflexions indépendantes pour 4460 réflexions mesurées, $R_{int} = 0.02$; 1118 réflexions considérées comme inobservées sur la base $\sigma(F) > F$. Structure résolue par programme MULTAN (Main, Lessinger, Woolfson, Germain & Declercq, 1977). Affinements (anisotrope pour les atomes lourds) par programme SHELX (Sheldrick, 1976) basés sur F.

© 1984 International Union of Crystallography

Dans le cycle pyrroline

Tableau 1. Coordonnées atomiques et facteurs d'agitation thermique isotrope

Tableau 2. Longueurs (Å) et angles (°) de liaisons intramoléculaires

	$B_{\mathrm{\acute{e}q}}=(8\pi^2/3)$ trace U.			
	x	у	z	
N(1)	0,2339 (3)	0,3597 (3)	0,4529 (3)	
C(2)	0,1989 (3)	0,4648 (3)	0,4418 (4)	
C(3)	0,2055 (4)	0,4843 (3)	0,2912 (4)	
C(4)	0,2165 (3)	0,3518 (3)	0,1789 (4)	
C(5)	0,2729 (3)	0,2854 (3)	0,3081 (4)	
C(21)	0,1586 (3)	0,5626 (3)	0,5734 (4)	
C(22)	0,1140 (4)	0,6743 (4)	0,5541 (5)	
C(23)	0,0802 (4)	0,7674 (4)	0,6823 (6)	
C(24)	0,0921 (4)	0,7471 (5)	0,8247 (6)	
C(25)	0,1343 (4)	0,6365 (5)	0,8442 (5)	
C(26)	0,1678 (4)	0,5434 (4)	0,7178 (5)	
C(41)	0,2848 (4)	0,3346 (3)	0,0572 (4)	
C(42)	0,2335 (4)	0,2698 (3)	-0,1152 (4)	
N(42)	0,0993 (4)	0,2204 (3)	-0,1979 (4)	
O(42.1)	0,0813 (3)	0,1190 (3)	-0,3081 (4)	
O(42.2)	0,0134 (3)	0,2863 (3)	-0,1568 (4)	
C(43)	0,2978 (5)	0,2504 (4)	-0,2262 (5)	
C(44)	0,4192 (5)	0,2985 (4)	-0,1618 (6)	
C(45)	0,4748 (4)	0,3644 (4)	0,0085 (6)	
C(46)	0,4081 (4)	0,3836 (4)	0,1168 (5)	
C(51)	0,2214 (3)	0,1549 (3)	0,2332 (4)	
O(51)	0,1656 (2)	0,1030 (2)	0,0853 (3)	
O(52)	0,2475 (3)	0,1079 (2)	0,3539 (3)	
C(52)	0,2039 (5)	-0,0181 (4)	0,2997 (6)	
C(53)	0,3081 (5)	-0,1035 (4)	0,2647 (6)	
C(54)	0,4225 (4)	0,2799 (3)	0,3764 (5)	
O(53)	0,4903 (3)	0,3558 (3)	0,4993 (3)	
O(54)	0,4629 (2)	0,1815 (2)	0,2749 (3)	
C(55)	0,6043 (4)	0,1726 (5)	0,3149 (7)	
C(56)	0,6333 (6)	0,0569 (6)	0,2110(1)	

Atomes d'hydrogène localisés par Fourier différenc pour les affinements, seuls H(3,1) et H(3,2) considér comme libres. Tous les autres atomes d'hydrogène sont bloqués à distance C-H = 1.08 Å. $R = R_w = 0.068$. Rapport max. $\Delta/\sigma = 0.379$. Facteurs de diffusion atomique, f et f' extraits de International Tables for X-ray Crystallography (1974).

Discussion. Les coordonnées atomiques et facteurs d'agitation thermique isotrope sont portés dans le Tableau 1, les longueurs et angles de liaison intramoléculaires dans le Tableau 2,* la structure cristalline sur la Fig. 1 tracée à l'aide du programme ORTEP (Johnson, 1965). La comparaison des structures (1) et (2) est portée sur la Fig. 2.

Comme dans (1), N,C(2),C(3) et C(5) définissent le plan π_1 du cycle pyrroline mais C(4) est davantage hors

D. (12)	N(1)–C(2)	1,274 (5)	C(5)-N(1)-C(2)	108,4 (3)
$D_{eq}(A^{-})$	C(2)–C(3)	1,508 (6)	N(1)-C(2)-C(3)	116,0 (3)
4,5 (2)	C(3)–C(4)	1,531 (4)	C(2)-C(3)-C(4)	100,5 (3)
4,4 (2)	C(4)–C(5)	1,546 (5)	C(3)-C(4)-C(5)	102,6 (3)
5,1 (2)	C(5) - N(1)	1,472 (5)	C(4) - C(5) - N(1)	105,5 (3)
4,5 (2)	Autour du cycle py	vrroline		
4,1 (2)			C(3) = C(4) = C(41)	1154(4)
4,6 (2)	C(4) - C(41)	1.516 (6)	C(5) = C(4) = C(41)	1178(3)
5,6 (2)	C(2) - C(21)	1 483 (5)	N(1) - C(2) - C(21)	121 4 (4)
6,4(3)	0(2) 0(21)	1,100 (0)	C(3) = C(2) = C(21)	1225(4)
0,0(3)	Dans le guale a			122,5 (5)
6,9 (3)	Dans le cycle φ_2	1 201 (()		
5,9 (2) 4 7 (2)	C(21) = C(22) C(22) = C(22)	1,391 (6)	C(26) = C(21) = C(22)	119,8 (4)
4,7(2)	C(22) = C(23) C(22) = C(24)	1,404 (0)	C(21) - C(22) - C(23)	119,7(4)
5,1(2)	C(23) - C(24) C(24) - C(25)	1,304 (9)	C(22) = C(23) = C(24)	119,4 (5)
0,1(2)	C(24) = C(25) C(25) = C(26)	1,373(8)	C(23) = C(24) = C(25)	121,4 (4)
8,0 (2) 7,2 (2)	C(25) = C(26)	1,392 (6)	C(24) = C(25) = C(26)	119,7 (5)
(2)	C(20) - C(21)	1,385 (7)	C(25) = C(26) = C(21)	119,9 (4)
0,3(2)	Dans le cycle φ_4			
7,8(3)	C(41)–C(42)	1,386 (4)	C(46) - C(41) - C(42)	115,7 (4)
57(3)	C(42)–C(43)	1,392 (7)	C(41)-C(42)-C(43)	124,1 (4)
3,7(2)	C(43)C(44)	1,370 (7)	C(42) - C(43) - C(44)	118,1 (4)
4,7(2) 5 4 (2)	C(44)–C(45)	1,378 (6)	C(43)–C(44)–C(45)	120,3 (6)
59(1)	C(45)–C(46)	1,391 (8)	C(44) - C(45) - C(46)	120,5 (4)
3,0(1)	C(46)C(41)	1,398 (6)	C(45)-C(46)-C(41)	121,2 (3)
87(3)	Dans les groupeme	ents éthoxycar	bonyle	
5,1(2)	C(5)-C(51)	1,526 (5)	$\dot{C}(5) - C(51) - O(51)$	123.7 (4)
62(2)	C(51)O(51)	1,196 (4)	C(5) - C(51) - O(52)	110,9 (3)
5,8(2)	C(51)-O(52)	1,334 (6)	O(51) - C(51) - O(52)	125.3 (4)
83(3)	O(52)-C(52)	1,469 (5)	C(51) = O(52) = C(52)	116.9 (3)
14,3 (8)	C(52)–C(53)	1,478 (7)	O(52)-C(52)-C(53)	108,8 (4)
	C(5)–C(54)	1,551 (5)	C(5)-C(54)-O(53)	124,2 (3)
	C(54)-O(53)	1,193 (4)	C(5)-C(54)-O(54)	110,1 (2)
rence:	C(54)-O(54)	1,330 (4)	O(53)-C(54)-O(54)	125,7 (4)
idánás	O(54)–C(55)	1,480 (5)	C(54)-O(54)-C(55)	115,6 (3)
sideres	C(55) - C(56)	1.416 (8)	O(54) - C(55) - C(56)	108 8 (4)

de ce plan à -0,420 (4) Å au lieu de -0,292 (5) Å, provoquant une accentuation de la forme enveloppe du cycle. Le phényl-4 passe d'une position pseudo équatoriale [à 0,414 (4) Å de π_1] en une position équatoriale plus dégagée [à 0,059 (5) Å de π_1]. Le plan du phényl-4 (π_4) devient pratiquement perpendiculaire à π , [82,5 (8)° au lieu de 65 (1)°] afin de diminuer l'encombrement stérique. Cette rotation de 17,5 (18)° éloigne H(4) du cône de blindage du phényl-4 et rend compte de son déplacement chimique important vers les champs faibles (40 Hz). Ce déblindage s'observe pour tous les composés ortho substitués que nous avons étudiés (2-CH₃, 2-OCH₃, 2-NO₂ et 2-Cl) (Robert et al., 1980). De plus, le phényl-4 présente une légère distorsion due à NO₂ qui ne lui est pas coplanaire $[43,3(4)^{\circ}].$

Le phényl-2 est plan et demeure coplanaire à π_1 [6,5 (8)° pour (1), 8 (1)° pour (2)].

L'accentuation de la forme enveloppe au niveau du C(4) modifie les angles de torsion H(3,1)-C(3)-C(4)-H(4) [22,3 (6)°] et H(3,2)-C(3)-C(4)-H(4) $[145,2(5)^{\circ}]$. L'angle dièdre entre H(4) et H(3,1) augmente de 6° et celui entre H(4) et H(3,2) diminue de 10° ce qui se traduit par une baisse de 3Hz de ³J.

^{*} Les listes des facteurs de structure, des coordonnées des atomes d'hydrogène, des facteurs d'agitation thermique anisotrope, ainsi que des tableaux concernant, la planéité des cycles et des groupements éthoxycarbonyles, les angles de torsions, les distances entre les milieux M_2 et M_4 des phényl-2 et phényl-4 et les atomes d'hydrogène des éthoxycarbonyles, la comparaison entre les données RMN et cristallographiques sont déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 39220: 24 pp.). Il peut en être obtenu des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

C(5), C(51), O(51) et O(52) définissent le plan π_7 d'un des groupements carboxylate d'éthyle. C(52) du méthylène est pratiquement dans ce plan en accord avec ce que l'on observe généralement. C(53) du méthyle est au contraire très éloigné. Il s'agit de la chaîne ester en *trans* du phényl-4, la plus dégagée des deux et que nous avions nommée 5'.

Fig. 1. Structure cristalline du (nitro-2 phényl)-3 phényl-5 dihydro-3,4 2*H*-pyrroledicarboxylate-2,2 de diéthyle.

Fig. 2. Comparaison de la structure de (1) et (2).

C(5), C(54), O(53) et O(54) définissent le plan π_8 de l'autre groupement carboxylate d'éthyle. C(55) et C(56) de l'éthyle s'éloignent de π_8 . Le groupement NO₂ entraîne des contraintes stériques qui empêchent la quasi planéité de cette chaîne qui présente une conformation totalement décalée et correspond à celle que nous avions nommée 5, en *cis* du phényl-4.

Par rapport à (1), l'angle dièdre entre π_4 et π_8 est légèrement augmenté de 9 (1)° alors que l'angle entre π_4 et π_7 diminue de 7 (1)°. De plus, l'angle entre π_7 et π_8 augmente de 6 (1)° ce qui tend à placer ces deux plans pratiquement orthogonaux.

La détermination des distances entre les protons méthylénique et méthylique et le milieu M_4 de π_4 avait permis leur identification dans le cas de (1) (Théobald *et al.*, 1982).

Le même calcul pour (2) donne des valeurs comparables et rend compte des différents déplacements chimiques de ces protons. Les distances entre H(55,1) et H(55,2) et M_4 vérifient l'éloignement de l'ester en *cis* et celles de H(52,1) et H(52,2) le rapprochement de l'ester en *trans* par rapport au phényl-4, ce que traduisaient déjà les valeurs des angles dièdres entre π_8 et π_4 , d'une part, et π_7 et π_4 , d'autre part.

Ce même type de calcul appliqué aux protons méthyliques n'est pas significatif car ils sont trop éloignés du phényl-4. Il en est de même pour le phényl-2 qui ne provoque aucune influence.

L'introduction d'un groupement NO₂ en ortho du phényl-4 provoque des contraintes stériques qui entraînent l'accentuation de la forme enveloppe du cycle pyrrolinique au niveau de C(4). Le phényl-4 initialement pseudo équatorial devient équatorial, position plus dégagée, et pratiquement orthogonal au plan de la pyrroline en repoussant la chaîne ester en cis. Ces observations, en accord avec les données RMN, permettent d'extrapoler ces résultats aux autres pyrrolines ortho substituées. L'important déplacement chimique vers les champs faibles de H(4), géminé en phényl-4, et la diminution de ³J H(4), H(3,2) sont, non seulement la conséquence, mais aussi la mise en évidence de la modification conformationnelle du cycle pyrroline. De plus cette étude montre le maintien des conformations lorsque l'on passe de l'état solide à l'état dissous.

Références

- International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Rapport ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- Koch, J., Robert, J. F. & Panouse, J. J. (1978). C. R. Acad Sci. Sér. C, 286, 95–98.
- MAIN, P., LESSINGER, L., WOOLFSON, M. M., GERMAIN, G. & DECLERCQ, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. de York, Angleterre, et Louvain, Belgique.

ROBERT, J. F., KOCH, J. & PANOUSE, J. J. (1979). Spectrochim. Acta Part A, 35, 131-135.

ROBERT, J. F., KOCH, J., XICLUNA, A. & PANOUSE, J. J. (1980). Spectrochim. Acta Part A, 36, 535-541.

SHELDRICK, G. M. (1976) SHELX. Programme pour la détermination de structure cristalline. Univ. de Cambridge, Angleterre. THÉOBALD, F., BIROUK, M. & ROBERT, J. F. (1982). Acta Cryst. B38. 1764-1768.

Acta Cryst. (1984). C40, 1011–1012

New Form of Bis(p-chlorophenyl) Ditelluride, C₁₂H₈Cl₂Te₂

BY G. VAN DEN BOSSCHE, M. R. SPIRLET, O. DIDEBERG AND L. DUPONT

Institut de Physique B5, Université de Liège au Sart Tilman, B-4000 Liège, Belgium

(Received 28 June 1983; accepted 25 January 1984)

Abstract. $M_r = 506 \cdot 36$, orthorhombic, $P2_12_12_1$, a =10.602 (3), b = 14.543 (4), c = 8.713 (3) Å, V = 1343 (1) Å³, Z = 4, D_m (by flotation) = 2.49, D_x $= 2.50 \text{ Mg m}^{-3}, \lambda(\text{Mo } K\alpha) = 0.7107 \text{ Å}, \mu(\text{Mo } K\alpha) =$ 4.68 mm^{-1} , F(000) = 872, T = 293 K. R = 0.045 for1959 unique reflections. The Te-Te bond length of 2.680(1) Å is shorter than the values reported for diphenyl ditellurides in earlier investigations. The value of the dihedral angle C-Te-Te/Te-Te-C is $88 \cdot 8$ (4)°. The molecular geometries observed in diphenyl ditellurides seem dependent on the packing modes alone.

Introduction. Within the framework of diamagneticanisotropy studies, single-crystal-growing experiments were undertaken on diphenyl ditelluride analogues and derivatives. For the title compound we obtained two different varieties of single crystals. One corresponds to the variety described by Kruse, Marsh & McCullough (1957), the other is a polymorphic form for which we have determined the structure.

Experimental. Solutions in dichloroethane give garnetred needles identical with those of Kruse. Marsh & McCullough (1957), while solutions in benzene/ petroleum ether (b.p. 333–353 K) give light-red prisms.

Crystal $0.28 \times 0.20 \times 0.50$ mm. Space group from Weissenberg and precession photographs, cell dimensions by least squares from angle data for 10 reflections $(30.56 < 2\theta < 42.94^{\circ})$. Hilger & Watts four-circle diffractometer, Zr-filtered Mo Ka radiation, ω -2 θ scan technique $[(\sin\theta/\lambda)_{max} = 0.7035 \text{ Å}^{-1}]$. Intensities corrected for Lorentz and polarization effects and, semiempirically, for absorption (North, Phillips & Mathews, 1968; limit values 0.697 and 0.997). $h \to 14, k \to 20, l$ $0 \rightarrow 12$; standard reflections 402 and $\overline{6}00$ stable [2157 < $F_o(402) < 2231; 1714 < F_o(\overline{6}00) < 1755].$ 2471 reflections measured [2351 with $I > 2\sigma(I)$ and 2165 unique with $R_{\text{int}} = 0.015$]. Structure solved by direct methods

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²) with e.s.d.'s in parentheses

	x	У	Ζ	$U_{aa}^{*}(\dot{\mathbf{A}}^{2})$
Te(1)	0.2175(1)	0.4655 (1)	0.9716(1)	0.0381 (4)
Te(2)	0.2600(1)	0.2839(1)	0.9776 (1)	0.0374 (4)
Cl(1)	-0·2171 (4)	0.5138 (3)	1.5133 (5)	0.054 (2)
Cl(2)	0.6919 (4)	0.2390 (3)	1.5235 (6)	0.060(2)
C(1)	0.069 (1)	0.474 (1)	1.138 (2)	0.035 (7)
C(2)	0.009 (1)	0.401 (1)	1.198 (2)	0.040 (8)
C(3)	-0·081 (1)	0.411 (1)	1.313 (2)	0.037 (7)
C(4)	-0·108 (1)	0-499 (1)	1.363 (2)	0.042 (8)
C(5)	-0·053 (1)	0.574 (1)	1.305 (2)	0.042 (8)
C(6)	0.040 (1)	0.563 (1)	1.187 (2)	0.041 (8)
C(7)	0.399 (1)	0.273 (1)	1.158 (2)	0.031 (6)
C(8)	0.460 (1)	0.352(1)	1-214 (2)	0.042 (8)
C(9)	0.550(1)	0.341(1)	1.329 (2)	0.043 (8)
C(10)	0.578 (1)	0.253 (1)	1.380 (2)	0.036 (7)
C(11)	0.516(1)	0.177 (1)	1.326 (2)	0.044 (8)
C(12)	0.424 (2)	0.188(1)	1.213 (2)	0.044 (8)

* $U_{\rm eq} = \frac{1}{3}$ trace $\tilde{\mathbf{U}}$.

Table 2. Bond distances (Å) and bond angles (°) with e.s.d.'s in parentheses

Te(1)-Te(2)	2.680(1)		
Te(1)-C(1)	2.14 (1)	C(6) - C(1)	1.40 (2)
Te(2) - C(7)	2.16(1)	C(7) - C(8)	1.41 (2)
C(1) - C(2)	1.34 (2)	C(8) - C(9)	1.40 (2)
C(2)–C(3)	1.39 (2)	C(9) - C(10)	1.39 (2)
C(3)–C(4)	1.37 (2)	C(10) - Cl(2)	1.75 (1)
C(4) - Cl(1)	1.76 (1)	C(10) - C(11)	1.38 (2)
C(4)–C(5)	1.34 (2)	C(11)-C(12)	1.40 (2)
C(5)-C(6)	1.43 (2)	C(12)-C(7)	1.35 (2)
C(1)-Te(1)-Te(2)	99 ∙5 (4)	C(4)-C(5)-C(6)	118.0 (1.)
C(7)-Te(2)-Te(1)	101.7 (4)	C(5) - C(6) - C(1)	119.0 (1.)
Te(1)-C(1)-C(2)	125.0 (1.)	C(6) - C(1) - C(2)	119.9 (1.)
Te(1)-C(1)-C(6)	115.0(1.)	C(7) - C(8) - C(9)	118-4 (1-)
Te(2)-C(7)-C(8)	120-4 (1-)	C(8)-C(9)-C(10)	118.4 (1.)
Te(2)-C(7)-C(12)	117.3 (1.)	C(9)-C(10)-Cl(2)	118-8 (1-)
C(1)-C(2)-C(3)	121.9 (1.)	C(9)-C(10)-C(11)	122.4 (1.)
C(2)-C(3)-C(4)	117-8 (1-)	Cl(2)-C(10)-C(11)	118-8 (1-)
C(3)-C(4)-Cl(1)	118-9 (1-)	C(10)C(11)-C(12	() 118·9 (1·)
C(3)-C(4)-C(5)	123-3 (1-)	C(11)-C(12)-C(7)	119.5 (1.)
Cl(1)-C(4)-C(5)	117-8 (1-)	C(12)-C(7)-C(8)	122.3 (1.)

© 1984 International Union of Crystallography